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The high-temperature susceptibility and spin-spin correlation 
function of the three-dimensional Ising model 

A J Guttmanni 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 9 July 1986 

Abstract. The series analysis protocol developed in the preceding paper is applied to the 
susceptibility and correlation function of the three-dimensional lsing model. For the spin-$ 
lsing data, we argue that the protocol needs modification to take account of trends in the 
data, which trends arise from the nature of the series. In this way we obtain y = 1.239 * 0.003 
for all cubic lattices and for a variety of spin values. The diamond lattice data lies outside 
this range, and we argue that this series is effectively far shorter than the others. We also 
estimate U = 0.632:; ::: for the BCC lattice and obtain critical point estimates for all lattice 
and spin models studied. 

1. Introduction 

For more than ten years the presence of discrepancies between renormalisation group 
estimates of the critical exponent y, which describes the divergence of the susceptibility 
of the n = 1 realisation of the O ( ~ ) C # J ~  field theory, and the series analysis estimates 
obtained for the S = Ising model, has been a matter of considerable concern. A 
partial resolution of these discrepancies has been given for certain lattices, notably the 
FCC (McKenzie 1983) and the BCC (Nickel 1982), but both the sc lattice and the 
diamond lattice series have generally yielded estimates for y which are significantly 
greater than the FCC and BCC lattice values, or the field theory predictions. The situation 
is carefully reviewed by Gaunt (1982). Very recently, George and Rehr (1986) have 
given good evidence of consistent exponent estimates for the three cubic lattices, though 
at a somewhat lower value of y than that found here. 

What is generally noticed in the series analysis results is a variation of estimates 
of y with lattice coordination number q. As q increases, so does y apparently decrease, 
and it is at the high q end of the spectrum that agreement with field theory values is 
attained. 

It has been argued that there is no reason to prefer these values to the low q series 
values, such as the diamond lattice ( q  = 4) estimates, particularly as the diamond lattice 
series is the longest-measured in numbers of series coefficients-of the available series. 

In this paper we have re-examined the available series using the protocol developed 
in the previous paper (Guttmann 1987, hereafter referred to as I ) ,  based on the method 
of integral approximants. We find complete consistency in our estimates of y for the 
three cubic lattices, while only the diamond lattice gives anomalously high estimates. 

t Permanent address: Department of Mathematics, Statistics and Computer Science, University of Newcastle, 
Newcastle, NSW 2308, Australia. 
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We argue however that the diamond series is eflectively the shortest of the series for 
any of the three dimensional lattices, and further that it is the worst behaved. We also 
obtain estimates of the critical temperature for all lattices, a result unobtainable by 
field theoretic methods. 

The results referred to above were obtained for the S = Ising model. Very recently, 
Nickel and Rehr (1986) have published long (21 term) series for the S = 1 and S = 2 
BCC lattice Ising model. Our analysis, applied to these two series, points to a somewhat 
lower value of y than that found for the three S = lattice series. There are two possible 
conclusions to be drawn. One is that the exponent y is spin dependent. The other is 
that the series are still too short to unambiguously reveal a precise consistent lattice 
and spin independent value of y. We incline strongly towards the latter view, and 
accordingly take into account trends, such as the tendency for estimates of y to decrease 
as the order of the approximant increases for the S = f data, while for the S = 2 data 
the opposite trend is evident. Under the assumption that these trends persist, we quote 
an estimate for y with confidence limits wide enough to encompass all the results. In 
this way we obtain y = 1.239*0.003, in agreement with an earlier, and quite distinct, 
analysis (Guttmann 1986). 

However, let us return to consider the effective length of a series as raised earlier. 
The graphs that contribute to the series expansion of the high-temperature susceptibility 
are the magnetic graphs, those which have precisely two vertices of odd degree. The 
lower the lattice coordination number, the greater is the minimum number of bonds 
in a specified topology. This is most readily visualised in two dimensions, where the 
lowest-order theta graph has five bonds on the high coordination number ( q  = 6) 
triangular lattice, but 1 1  bonds on the low coordination number ( q  = 3)  honeycomb 
lattice. As it is the magnetic topologies of higher cyclomatic index that asymptotically 
dominate the expansion, it is clear that the expansion must be sufficientiy long for 
these graphs to possess an embedding if sensible conclusions are to be drawn from 
the series analysis. One obvious measure of the 'effective length' of a series is the 
computer time used in its generation. That is, one hour of CPU time, utilising the same 
algorithm, will effectively sample the choices on a given lattice to approximately the 
same extent. The time taken to count graphs of n bonds on a given lattice model with 
critical point at o, is proportional to v i " .  For the four common three-dimensional 
lattices there are N,,, terms available, where N,,, is 22 (diamond), 19 (sc), 21 (BCC) 

and 15 (FCC), while the values of the critical points are approximately 0.354 (diamond), 
0.218 (sc), 0.156 (BCC) and 0.102 (FCC). The efective length of the series we take to 
be proportional to l / o ~ - - ' .  (The -1 in the exponent arises from the symmetry 
associated with the first step.) Thus we find that the effective lengths are in the ratio 
1 : 2.7 x lo2 : 4.6 x lo6: 2.6 x lo4 for the diamond, sc, BCC and FCC lattices, respectively. 
Expressed another way, the longest series is the BCC series. The FCC series would need 
two further terms to be of comparable length, while the sc series would need 7 or 8 
further terms and the diamond lattice a full 15 additional terms. We do not claim that 
this is a precise measure of the relative lengths of the four series, but it certainly shows 
that the diamond lattice series is by far the shortest, while the BCC is undoubtedly the 
longest. 

On the basis of these observations, it is already clear which series can be expected 
to be mare reliable and that is the high coordination number series. It is these that 
already give reasonable agreement with field theory predictions. 

As we show in the next section, we obtain y = 1.243 ztO.002 for all three cubic 
lattices and y = 1.239 for the S = 1 and 2 BCC lattices. We have also analysed the series 
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for p2 ,  the second moment of the spin-spin correlation function, which gives the 
correlation length exponent v, for the S = 4 BCC lattice, and find v = 0.632:;:::: for this 
lattice only. For other lattices the p2 series are far shorter and we can say no more 
but that they are consistent with the above result (or indeed with any other value of 
v in the range 0.625-0.640). 

2. Analysis of series 

Our method of analysis has been fully described in I. In table 1 we give a summary 
of critical point (U, = tanh(J/kT,)) and critical exponent ( y )  estimates for the four 
lattices obtained from first-order integral approximants, and for the sc and BCC lattices, 
also the K = 2  approximants. As discussed in I we have primarily used first-order 
integral approximants, even though the expected confluent singularity structure would 
suggest that second-order approximants would be more appropriate. As shown in I 

Table 1. Summary of critical point and critical exponent estimates for the diamond, 
simple-cubic, body-centred cubic and face-centred cubic spin-; Ising model susceptibility 
series from first-(K = 1) and second-(K = 2) order approximants. 

~ ~~ 

n uc (error) Y (enor)  1 n U, (error) y (error) i 

Diamond lattic ( K  = 1) 
14 0.353 654 (186) 
15 0.353 738 (102) 
16 0.353 855 (194) 
17 0.353 830 (127) 
18 0.353 880 (81) 
19 0.353 879 (64) 
20 0.353 864 (49) 
21 0.353 787 (279) 
22 0.353 825 (1 11) 

sc lattice ( K  = 1) 
12 0.218 175 (91) 
13 0.218 207 (91) 
14 0.218 160 (80) 
15 0.218 097 (96) 
16 0.218 090 (14) 
17 0.218 103 (20) 
18 0.218 119 (97) 
19 0.218 103 (38) 

1.2398 (117) 
1.24453 (81) 
1.2538 (152) 
1.2522 (122) 
1.2568 (83) 
1.2565 (83) 
1.2550 (46) 
1.2471 (310) 
1.2520 (108) 

1.2500 (396) 
1.2585 (128) 
1.2523 (118) 
1.2433 (159) 
1.2422 (26) 
1.2442 (43) 
1.2440 (73) 
1.2443 (88) 

BCC 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

lattice ( S  = 4, K = 1) 
0.156 128 (13) 1.2495 (21) 
0.156 085 (71) 1.2419 (135) 
0.156094(14) 1.2440 (39) 
0.156 090 (13) 1.2426 (30) 
0.156095 (3) 1.2438 (8) 
0.156 095 ( 5 )  1.2439 (15) 
0.156095(2) 1.2438(15) 
0.156 094 (2) 1.2434 (6) 
0.156092 ( 1 )  1.2428 ( 5 )  
0.156092(1) 1.2429(6) 

7 
8 

11 
13 
14 
15 
6 
3 
9 

8 
11 
8 

17 
9 
9 
9 
9 

10 
10 
11 
11 
10 
9 

10 
7 
7 
8 

F c c  lattice ( K  = 1) 
10 0.101 738 (56) 1.2470(159) 
11 0.101 721 (20) 1.2425 (65) 
12 0.101 714 (19) 1.2400 (70) 
13 0.101 724 (14) 1.2438 (59) 
14 0.101 725 (6) 1.2442 (28) 
15 0.101 721 (4) 1.2421 (21) 

sc lattice ( K  = 2) 
14 0.218 063 (80) 1.2433 (126) 
15 0.218 130(130) 1.2486(199) 
16 0.218 lOO(12) 1.2442 (23) 
17 0.218 115 (34) 1.2464 (67) 
18 0.218 127 (28) 1.2491 (57) 
19 0.218 130 (41) 1.2493 (76) 

BCC lattice ( S  = 4, K = 

13 0.156 123 (41) 
14 0.156 125 (57) 
15 0.156 104 (26) 
16 0.156 098 (6) 
17 0.156097 (3) 
18 0.156 094 (7) 
19 0.156 090 (22) 
20 0.156094(10) 
21 0.156 095 (9) 

2) 
1.2483 (56) 
1.2481 (69) 
1.2458 (54) 
1.2447 (16) 
1.3441 (10) 
1.2443 (30) 
1.2431 (40) 
1.2432 (28) 
1.2434 (34) 

5 
8 

11 
11 
10 
11 

4 
5 
4 
8 
7 
8 

3 
5 
7 
8 
8 
8 
4 
6 
6 



1858 A J Guttmann 

for the self-avoiding walk model, the first- and second-order approximants give similar 
exponent and critical point estimates, but the precision of the first-order approximants 
is substantially higher. This is also the case here, as can be seen from table 1. 

Following the procedure outlined in I ,  we have combined the entries in table 1 to 
give a single estimate of y and U, for each lattice. These are summarised in table 3. 
All errors quoted are two standard deviations from the mean. 

It can be seen that the three cubic lattices all give consistent estimates of y, which 
may be combined to give y = 1.243 *0.002, while the diamond lattice estimate is 
substantially higher at y = 1.252*0.003. However a look at the raw data of table 1 
shows that, for the diamond lattice data, the asymptotic regime has not yet been 
reached. For n > 18 there is a general downward drift of estimates of y with increasing 
values of n. This behaviour is also evident in the BCC lattice data for n < 15, the sc 
lattice data for n < 15 and there is a hint of such behaviour in the FCC data for n < 11. 
The three cubic lattices however appear to have ‘settled down’ to yield stable estimates 
of y and v, (we discuss this point further subsequently), while the diamond lattice 
data are yet to reach asymptopia. This observation is entirely consistent with our 
assessment, in 9 1, of the relative lengths of the four series. 

In table 2 we show the corresponding results for the spin-1 and spin-2 BCC Ising 
model series. The expansion parameter for these series is K = J / k T  rather than tanh K .  
These data indicate a somewhat lower value of y than does the spin-$ data. The spin-1 
estimates are very stable in the range shown and clearly indicate a value of y around 
1.2388. The spin-2 data are almost as stable, though the K = 2 approximants show a 
very clear trend for y to increase with increasing order of the approximant. We have 
attempted to extrapolate this trend by linear regression against 1/ n, which yields 
y = 1.2383, in good agreement with the spin-1 values. 

Table 2. Summary of critical point and critical exponent estimates for the body-centred 
cubic spin-1 and spin-2 Ising model susceptibility series from first-( K = 1) and second-( K = 
2) order approximants. 

K = l  K = 2  

n K, (error) Y (emor) I K, (error) Y (error) I 

BCC lattice (S= 1) 
15 0.224660(14) 
16 0.224 659 (4) 
17 0.224 659 (6) 
18 0.224658 (8) 
19 0.224 657 (2) 
20 0.224 657 (1) 
21 0.224 658 (4) 

BCC lattice (S = 2) 
14 0.292 254 (13) 
15 0.293 254 (9) 
16 0.293 252 (3) 
17 0.293 252 (3) 
18 0.293 256 (2) 
19 0.293 253 (3) 
20 0.293 254 (1) 
21 0.293 253 (3) 

1.2393 (22) 
1.2392 (9) 
1.2393 (15) 
1.2390 (15) 
1.2389 (4) 
1.2388 (2) 
1.2388 (1) 

1.2358 (17) 
1.2360 (13) 
1.2357 (4) 
1.2357 (5) 
1.2364 (4) 
1.2358 (8) 
1.2360 (2) 
1.2359 (6) 

12 
10 
11 
12 
IO 
7 
9 

12 
12 
8 
8 
9 

10 
8 

10 

0.224 657 (10) 
0.224 660 (20) 
0.224 657 (3) 
0.224 659 (1) 
0.224 658 (2) 
0.224 656 (2) 
0.224 657 (3) 

0.293 261 (17) 
0.293 250 (3) 
0.293 253 (14) 
0.293 252 (3) 
0.293 253 (2) 
0.293 254 (5) 
0.293 254 (3) 
0.293 255 (5) 

1.2387 (21) 
1.2391 (22) 
1.2389 (6) 
1.2392 (2) 
1.2392 (5) 
1.2386 (8) 
1.2388 (7) 

1.2366 (20) 
1.2354 (5) 
1.2357 (14) 
1.2357 (5) 
1.2359 (3) 
1.2361 (12) 
1.2361 (9) 
1.2363 (17) 
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Table 3. Critical point and critical exponent extimates obtained from the data in tables 1 
and 2. 

Lattice Critical point (error) Exponent (error) 
~ ~~~ ~ ~ 

Diamond U, = 0.353 834 (33)  y = 1.2520 ( 3 1 )  
sc u,=0.218 097 (12) y = 1.2431 (24) 
BCC (s=f) U, = 0.156 093 (2)  y =  1.2433 ( 3 )  

( S =  1 )  y = 1.2388 ( 1 )  
( S = 2 )  K ,  = 0.293 254 (1) y = 1.2360 (2)  

K ,  = 0.224 657 (1) 

FCC u,=0.101 722(4) y=1.2427(17)  

It is difficult to reconcile these results with the spin-f results. One possibility is 
that y is spin dependent. This abhorrent suggestion should only be entertained as a 
last resort, and we do not believe that our evidence is strong enough to advocate this 
possibility. It is clear that our analysis method will only give reliable error estimates 
if the asymptotic regime is reached. For the spin-$ BCC data there is some evidence 
that both the U, and y estimates are declining as n increases. For the FCC lattice there 
are too few terms for clear trends to be apparent as there is quite some scatter 
(1.240-1.244) in the last five estimates of y. For the sc lattice, the K = 1 approximants 
abruptly drop for n > 13, and thereafter the last five entries fluctuate in the range 
(1.242-1.244). The K = 2 approximants are significantly higher, though the associated 
errors are large enough that the K = 1 and K = 2 estimates overlap. Thus we see that 
for the longest spin-; series, there is a tendency for y to decrease with increasing order, 
but there is little evidence of this behaviour in the shorter series. However, had we 
only 16 terms in the spin-i BCC lattice series, we would have also claimed to find no 
decrease of y with order. Only with the full 21 term series do we see this behaviour. 
It appears then that there is some evidence for the following behaviour of the spin-: 
series. There is an initial regime in which the estimates decline as y increases, a second 
regime in which the estimates of y are steady and a third regime in which a decline 
is again observed. The diamond lattice data are still in the first regime, the simple 
cubic lattice data are in the second regime, and the FCC lattice data appear to be 
possibly entering the third regime, while the BCC lattice data are in the third regime. 
For the spin-2 data there is evidence of an increase in estimates of y with increasing 
order, while the S = 1 data are relatively stable. This presumably indicates the minimal 
effect that confluent singularities have in the S = 1 case, in agreement with the results 
found by Nickel and Rehr (1986). 

In the light of this picture, a ‘most likely’ value of y around 1.239 must be favoured. 
It is difficult to quote confidence limits in the light of the foregoing, but i~0.003 would 
encompass all the various trends and speculations. 

We turn now to an analysis of the second moment of the spin-spin correlation 
function, pz where 

In analogy with our study of the SAW problem, we take the term-by-term quotient of 
the p2 series and the susceptibility series. This is not a quantity of direct physical 
significance, but has the advantage that the critical point is precisely known and the 
exponent is 1 +2v. Thus the quantity is analogous to ( R i )  for self-avoiding walks. We 
have analysed it in precisely the same way as we analysed (R;) in I .  In table 4 we 
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Table 4. Summary of critical exponent estimates for the spin-f body-centred cubic correla- 
tion function. The series studied i s  that given by term-by-term quotients of CL? and ,yo, 
biased at x, = 1.0 and at x, = k1.0. ( a )  Biased at x, = 1, ( b )  biased at x, = + I  and x, = -1.  

(0) 

K = l  K = 2  K = 3  

n Exponent (error) / Exponent (error) / Exponent (error) 1 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2.2765 (29) 
2.2774 (25) 
2.2771 (12) 
2.2773 (49) 
2.2747 ( 5 5 )  
2.2751 (15) 
2.2734 (1 1 )  
2.2731 (13) 
2.2728 (21) 
2.2734 (17) 
2.2707 (37) 
2.2704 (19) 

7 
9 

11 
12 
11 
11 
9 

12 
12 
11 
8 
8 

2.2794 (50) 
2.2771 (3) 
2.2784 (46) 
2.2765 (30) 
2.2756 (34) 
2.2741 (68) 
2.2743 (16) 
2.2712 (64) 
2.2684 (78) 
2.2693 (48) 
2.2706 (31) 

3 
4 
6 
6 
7 
7 
7 
5 
5 
6 
4 

2.2763 (59) 
2.2748 (12) 
2.2743 (1 1)  
2.2727 (16) 
2.2720 (93) 
2.2728 (69) 
2.2666 (80) 
2.2622 (40) 

~~~~ 

K = l  K = 2  K = 3  

n Exponent (error) I Exponent (error) / Exponent (error) / 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2.2767 (19) 
2.2771 (26) 
2.2768 (19) 
2.2776 (19) 
2.2767 (27) 
2.2741 (41) 
2.2737 (7) 
2.2731 (6) 
2.2727 (17) 
2.2729 (58) 
2.2713 (32) 
2.2694 (23) 

9 
10 
11 
12 
8 

10 
11 
11 
11 
10 
8 
8 

2.2806 (65) 
2.2776 (4) 
2.2775 (21) 
2.2776 (22) 
2.2757 (17) 
2.2768 (26) 
2.2750 (41) 
2.2735 (35) 
2.2703 (46) 
2.2693 (33) 
2.2685 (3) 
2.2672 (38) 

3 
4 
5 
6 
7 
6 
7 
6 
5 
8 
5 
5 

2.2756 (31) 
2.2751 (28) 
2.2747 (12) 
2.2730 (22) 
2.2732 (26) 
2.2725 (32) 
2.2684 (92) 
2.2707 (68) 
2.2645 (62) 

summarise the integral approximants. Two sets of approximants are shown, those 
biased at 1.0, and those biased both at k1.0. Since the BCC is a loose-packed lattice 
that allows antiferromagnetic ordering, the antiferromagnetic singularity maps to - 1. 

As in the analogous analysis of (I?;) in I, the exponent estimates decrease as the 
order increases. The decline is comparable to that observed in the sc lattice (I?:) data 
in I, and as discussed there, the higher-order approximants are likely to be the most 
appropriate due to the complexity of the confluences caused by taking the term-by-term 
quotient of F~ and xo. It is clear from table 4 that the approximants biased at *l give 
estimates of greater consistency and with lower errors than those biased only at + 1. 
The K = 1 approximants in both cases point to a limit <2.270. The K = 2 approximants 
are consistent with a limit <2.268 and the K = 3 approximants suggest that the limit 
is less than 2.266. By comparing the apparent rate of convergence with that found in 
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I for both the triangular lattice and simple-cubic lattice ( R ; )  series, we estimate 
1 +2v = 2.264:::g or v = 0.632-0,003. +0.002 

3. Discussion 

This study complements several recent studies of the same problem. Adler (1983), 
using a generalisation of the PadC method that incorporates a transformation designed 
to account for confluent singularities, obtained estimates of y in the range 1.238-1.239 
for the lattices considered here. That method however is a biased method in that it 
depends on the right choice of the correction-to-scaling exponent. 

An alternative, but also biased, analysis based on second-order integral 
approximants has recently been carried out by George and Rehr (1986). Their study 
also considered other leading exponents, as well as the correction-to-scaling exponent 
8. Indeed, their method of analysis involves forcing a value of 8 = ; onto the second- 
order approximants. Other methods of implicit biasing were also employed. In this 
way they obtained results significantly lower than ours. For the BCC lattice they find 
y = 1.237 f 0.002, while for the FCC lattice, only a less detailed analysis was possible 
by their methods, yielding y = 1.239T::Ei and for the sc lattice they found y = 
1.235 * 0.004. 

A related analysis by Nickel and Rehr (1986) of a family of three-dimensional 
models which interpolate between the spin-; Ising model and the Gaussian model also 
gave y = 1.237 f 0.002 and v = 0.630 f 0.0015. However, analysis of the same data by 
Fisher and Chen (1985) gave y = 1.2395*0.0004 and v = 0.632*0.001. An earlier 
analysis of George and Rehr (1984) of this data gave y = 1.2378f0.0006 and v = 
0.631 15*0.0003. 

A multi-parameter fit method was employed by Ferer and Velgakis (1983) in their 

criticism of this analysis has been given by Fisher and Chen (1985). A different analysis 
of s p i n 4  data by Zinn-Justin (1981) was also biased by the requirement that the 
exponent 8 be independent of S. This gave y = 1.2385 * 0.0015 and v = 0.6305 * 0.0015. 
The field theory results of Baker et a1 (1976, 1978) and Le Guillou and Zinn-Justin 
(1980) gave y = 1.241 * 0.002 and v = 0.630* 0.002. Other recent values are v = 
0.628 * 0.002 and y = 1.240 f 0.002 (Roskies 1981), v = 0.630 * 0.003 and y = 
1.237 f 0.003 (Nickel and Dixon 1982) and v = 0.6305 * 0.0025 and y = 1.239 * 0.004 
(Le Guillou and Zinn Justin 1985). 

Thus our analysis has given a value of y that agrees well with most of the recent 
analyses. Our analysis has the advantage over most of those cited that our method 
involves no bias by quantities not exactly known, except that implicit in the choice of 
the method of analysis. There is of course a correlation between the value of the 
critical temperature and the critical exponent. If we knew one, we could construct 
biased estimates for the other. For the sc lattice, the Monte Carlo work of Pawley et 
a1 (1984) gave K, = 0.221 654 * 0.000 006, while our estimate is K, = 
0.221 657 * 0.000 007, which is in excellent agreement. The alternative Monte Carlo 
analysis of Barber et a1 (1985) gave K, = 0.221 650 f 0.000 005, slightly lower than our 
value, but there is some concern that this Monte Carlo result may have been affected 
by a biased random number generator. The central estimate of George and Rehr (1986) 
was identical to ours, at K, = 0.221 657 * 0.000 005, while their values for other spins 
and other lattices are also in good agreement with ours. However, given that we have 

study of the BCC lattice data and they obtained y = 1.242f::::: and v = 0.634-0.004. +0.003 A 
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extrapolated trends to lower the values of the spin-: series exponent estimates and 
raise the value of the spin-2 series exponent estimates, we should make corresponding 
adjustments to the estimates of U, and K,, since these are highly correlated with y.  
Numerical experimentation indicates that the effect of this correlation is such as to 
lower the critical point estimates of the spin-f lattices by 0.002%, and to increase the 
spin-2 critical point estimate by 0.001%. Our ‘preferred values’ then become 

U, = 0,218 093 sc spin-f 

U, = 0,156 090 BCC spin-; 

U, = 0,220 952 BCC spin-1 

U, = 0,285 130 BCC spin-2 

U, = 0,101 720 FCC spin-f. 

Since these are preferred values, we are hesitant to quote errors, but confidence limits 
of 10 in the last quoted digit seems appropriately conservative. 

Our estimate of Y is in good agreement with that of Fisher and Chen (1989, though 
our central value is slightly higher than that of George and Rehr (1986) or Nickel and 
Rehr (1986). Nevertheless, our error bars overlap substantially. 

The major conclusion however is that we have obtained good agreement between 
lattices of the exponent y, as well as reasonable agreement with the predictions of 
field theory. There seems little reason to doubt the conventional view that y is both 
lattice and spin independent for a given dimensionality and that the 4~~ continuum 
field theory is in the same universality class as the spin-; Ising model. 

It would nevertheless be reassuring to have a substantially extended diamond lattice 
series (or perhaps some Monte Carlo work) so that the exponent estimates from this 
lattice too could be seen to be consistent with those of other lattices. 
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